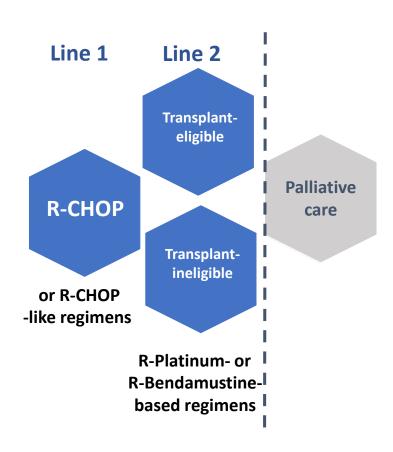
Journées de l'innovation en Biologie

Innovations thérapeutiques dans les lymphomes

Catherine Thieblemont

Professor of Medicine, Hematology –Head of Lymphoma Department

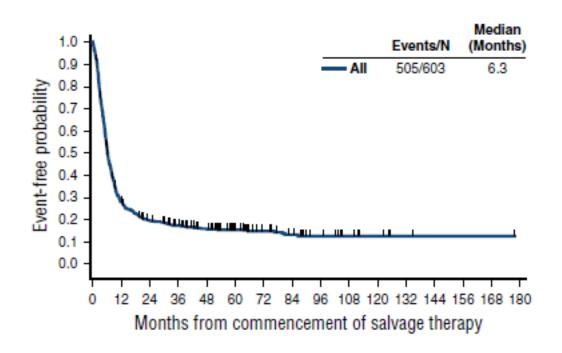
Saint-Louis Hospital, Paris University, Paris



December,1rst 2021

Standard treatment in aggressive large B-cell lymphomas

Before CAR T-cells era



Salvage after 1rst line

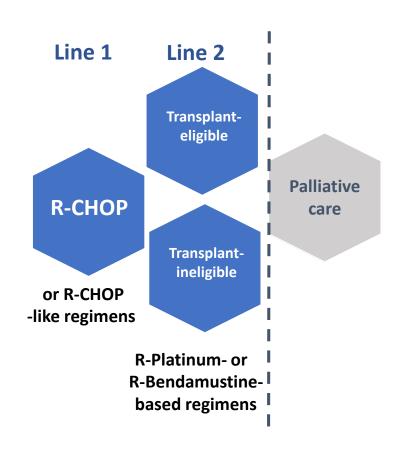
SCHOLAR-1

Median **OS**: 6.3 months (95% CI 5.9-7.0)

- ORR: 26%

- CR: 7%

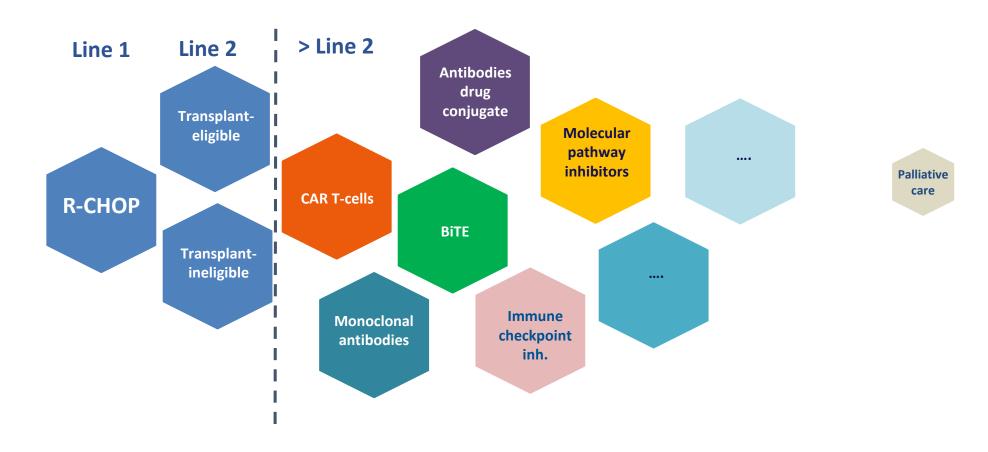
- mOS: 6.3 mo


Key subgroups	Median OS
Relapsed > 12mo post-ASCT	6,2 mo
Primary refractory	7,1 mo
Refractory 2L+	6,1 mo

Crump M et al. Blood. 2017; 130: 1800-1808.

Relapsed/refractory lymphomas

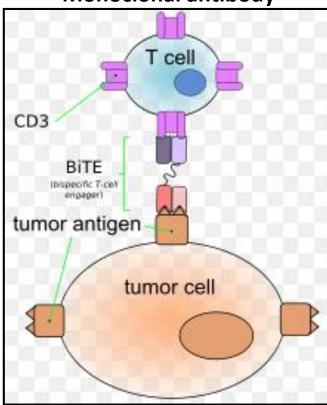
Before 2018



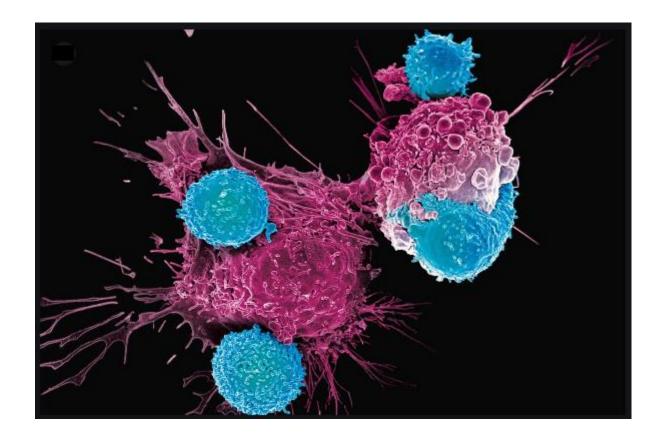
a high medical need

First approval CAR T-cells: 2018

Chimeric antigen receptor (CAR) T-cell and Bispecific T-cell engager (BiTE) are

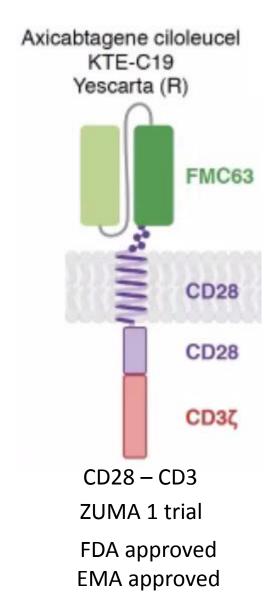

- Very promising drugs in patients with relapsed/refractory hematological malignancies
- Both are using the immune system to better target tumor cells
- But they are differences in how they are created and their mechanisms of action

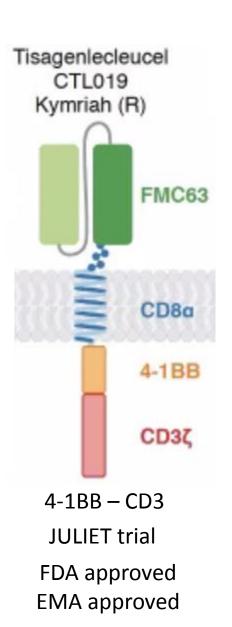
Mode of action

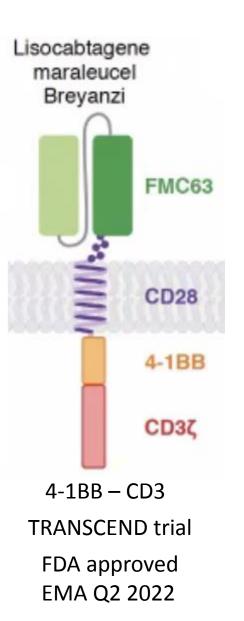

Bispecific T-cell engagers

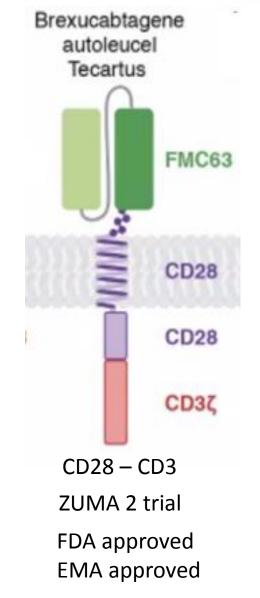
Monoclonal antibody

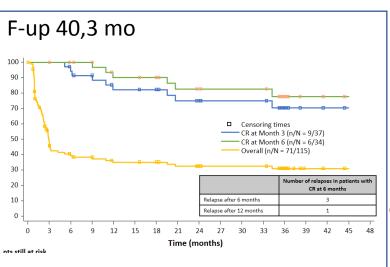
 It detects proteins to better target tumor cells and activate the immune cells

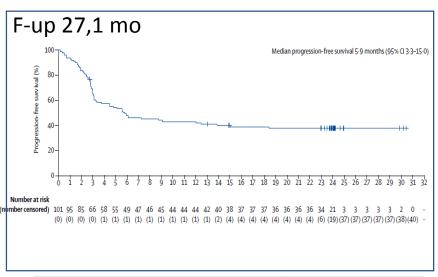

CAR T-cells are a living drugs




Our own immunity becomes the drug


Anti-CD19 CAR T-cells in B-cell lymphomas

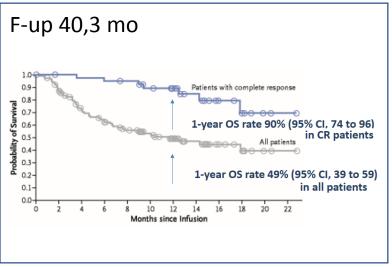

Efficacy: PFS and response rate in R/R LBCL



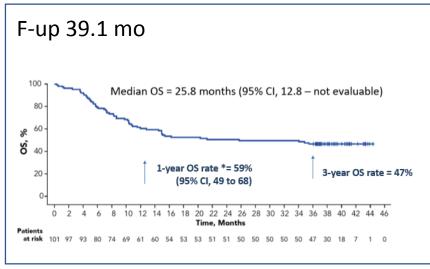
JULIET

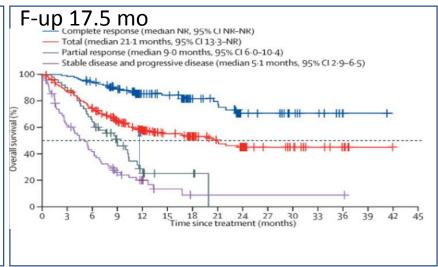
	F	-up	17,5	mo								
		100	1			F	PFS					
		80 —	A To		+++				Median	CR: NR		
	PFS (%)	60 —	*	++-		*****	+			1111		
	Ä	40 —				*****	-		otal: 6.8	months		-
		20 —	Median	follow-u	o: 12.3 (95% CI 12	2.0–17.5) months	5			
		0 —) 3	6	9	12	15	18	21	24	27	30
						Tir	ne (mon	ths)				
╽												

Efficacy, %	n = 115
ORR ^a , %	52%
CRª, %	40%
Median DOR (95% CI), months	
PFS at 12 months (95% CI), %	83%
OS at 12 months (95% CI), %	49%


Efficacy, %	n = 101
ORR ²	83%
CR ²	58%
2-year PFS%	
Patients with CR at 3 months	72%
Patients with PR at 3 months	75%
Patients with SD at 3 months	22%
4-year OS ¹	44%

Efficacy, %1	n = 256
ORR	73%
CR	53%
2-year PFS	42%
2-year OS	45%


Efficacy: Overall survival in R/R LBCL


JULIET

ZUMA-1

TRANSCEND-001

$$1-y OS = 49\%$$

$$1-y OS = 59\%$$

$$1-y OS = 59\%$$

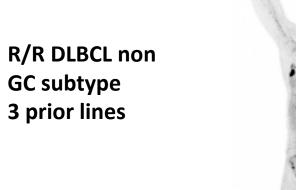
European real-world analyses: axi-cel and tisa-cel

	UK ¹		Germany ²	France ³	Spain	
Characteristics	axi-cel Tisa-cel (n = 183)		axi-cel (n = 137) tisa-cel (n = 130) (n = 267)	axi-cel (n=330) tisa-cel (n=191) (n = 521)	axi-cel ⁴ (n = 92)	Tisa-cel ⁵ (N = 75)
ORR, ^a %	76	44	62	74,2	87	60
CR, %	43	31	33	53	65	32
PFS, (months)	NF	?	20% (12)	44.5% (6)	56% (6)	32% (12)
Median OS, months	NF	3	13	12.7	12.3	10.7
Median follow-up, months	6.0	0	7.0	7.4	6.5	14.1

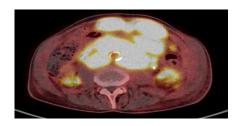
this is not a comparison of the same study

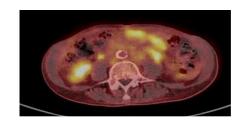
^a ORR is objective response rate in real world from Spain using tisagenlecleucel; ORR is overall response rate in real world from Spain using axi-cel and real world from UK, France, and Germany.

1. Kuhnl A, et al. Presented at EHA 2020; abstract S243. 2. Bethge WA, et al. Presented at EBMT 2021; abstract AA2-2. 3. Le Gouill S et al. EHA 2021, abs 84. 4. Kwon M, et al. Presented at EBMT 2021; abstract OS3-4. 5. lacoboni G, et al. Cancer Med. 2021; 10:3214-23.

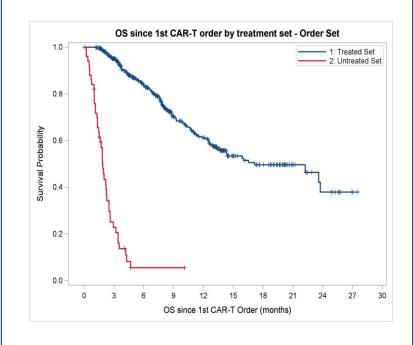



CAR T-cell



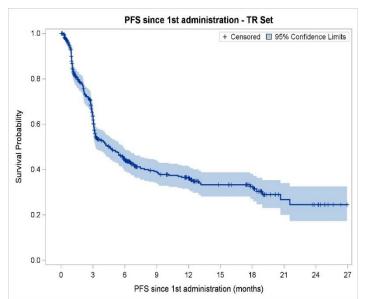

CURE

TMTV = 1200ml

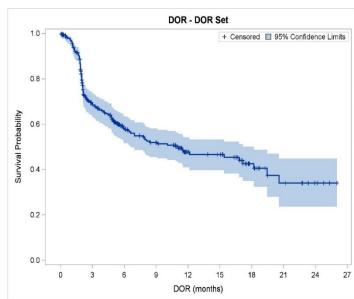


Patient outcomes (all patients)

OS at 6 months


- Untreated set: 5.5% (1.1-15.6)
- Treated set: 83.7% (79.8-86.9)

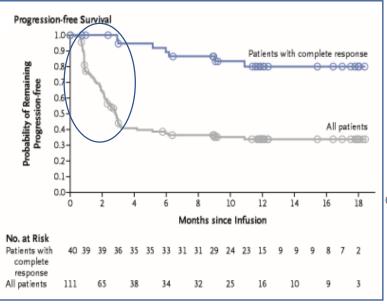
Median follow-up = 8.1 months (7.8-8.6) (calculated from CAR-T order)


PFS at 6 months

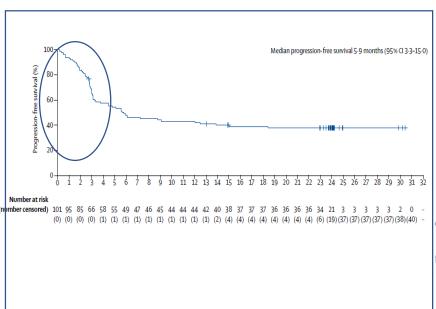
44.5% (39.6-49.2)

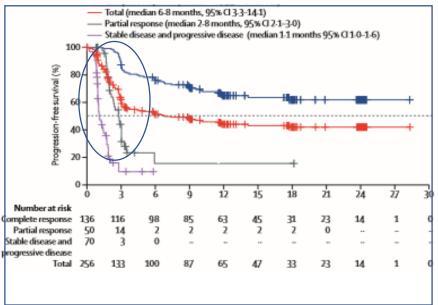
DOR at 6 months

57.7% (51.6-63.3)



Median follow-up = 6.5 months (6.1-7.1) (calculated from CAR-T infusion)


Progression – free survival

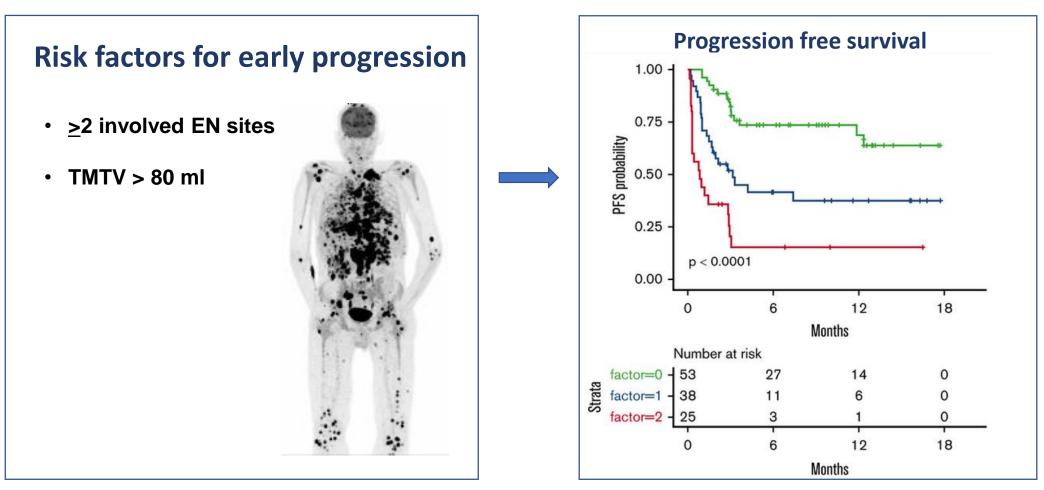

JULIET

ZUMA-1

TRANSCEND-001

Multivariate analysis

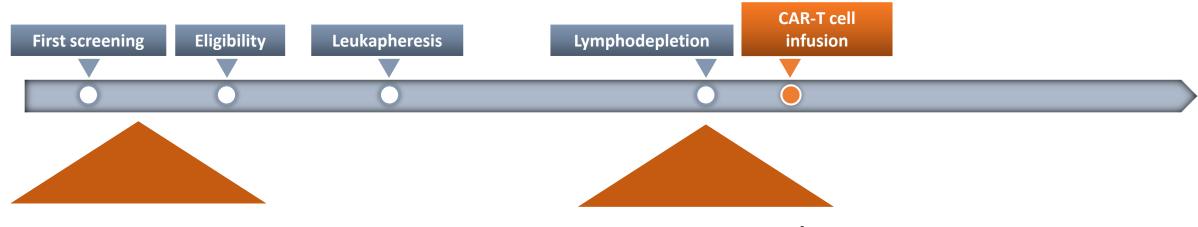
A time of decision


Multivariate models – Parameters at the time of decision	Relapse HR (95CI)	Early relapse OR (95CI)	Death HR (95CI)
Age ≥ 65			
Lymphoma Subtypes (DLBCL; PMBL FL)			
GC/nGC			
ECOG PS ≥ 2		2.95 (1.03-8.45); p=0.044	
B symptoms	1.85 (1.01-3.41); p=0.0470		
Elevated LDH	2.04 (1.19-3.49); p=0.00933	9.61 (1.23-75.41); p=0.031	
Ann Arbor III /IV			
Number of extranodal sites ≥2			4.17 (1.99-8.72); p=0.000148
IPI high vs other			
R-IPI poor vs other			

A time of lymphodepletion

Multivariate models – Parameters at the time of treatment	Relapse HR (95CI)	Early relapse OR (95Cl)	Death HR (95CI)
Age >65			
Sex M			
ECOG PS			
Ann Arbor III /IV			
Number of extranodal sites ≥2	2.50 (1.44-4.35); p=0.00111	4.67 (1.55-14.11); p=0.0063	3.61 (1.55-8.38); p=0.00283
IPI High vs other			
R-IPI poor vs other			
Progressive disease at			
infusion			
High Brigding therapy			
Elevated LDH			
CRP	1.12 (1.07-1.17); p<0.0001	1.15 (1.03-1.29); p=0.016	1.12 (1.06-1.17); p<0.0001
Ferritin			
Albumin			
Lymphocytes			
Bulky mass > 5.cm			
TMTV 41 > 80.42	2.18 (1.23-3.89); p=0.00794	4.35 (1.32-14.37); p=0.016	3.41 (1.41-8.26); p=0.00651

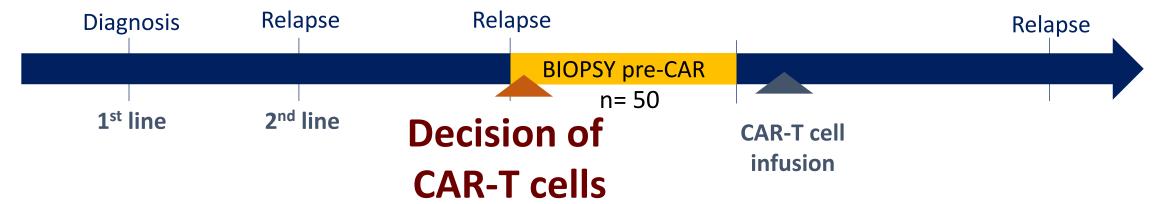
Risk factors identified for early progression were extra-nodal involvement : >2 involved EN sites and lymphoma burden TMTV



Vercellino & Di Blasi, et al. Blood Adv 2020

Selection of patients for CAR T-cells

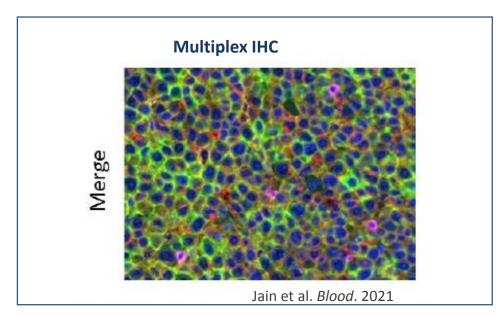
With the actual commercialized CAR T-cells


- Pts with rapidly progressing disease
- Elevated LDH
- with <u>></u>2 extranodal sites
- Poor ECOG PS

- TMTV > 80 ml
- with ≥2 extranodal sites

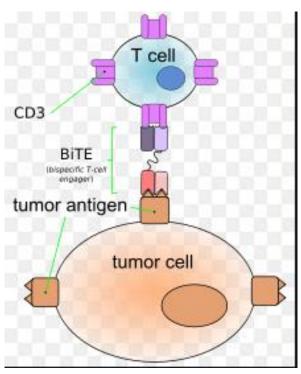
Other parameters?

Biology



Biology of the T lymphocytes

PREDICARTe: Identification of early biomarkers to aid in the medical decision


to proceed with the manufacture of CAR-T cells in patients with DLBCL (ARC funding)

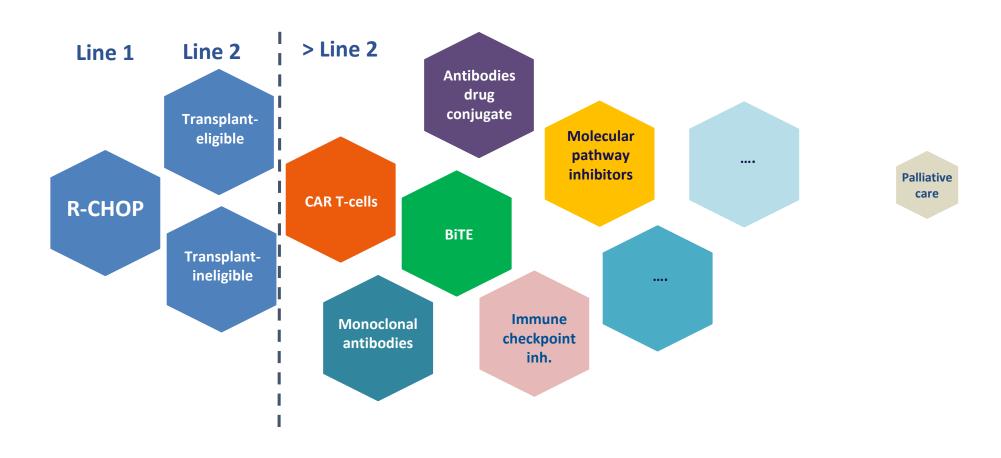
Biology of the tumor

Bispecific T-cell engager (BiTE)

Wikipedia

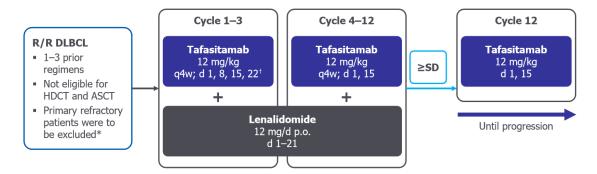
- First approved by FDA in 2014 in R/R ALL, and currently evaluated in clinical trials for R/R lymphoma, R/R myeloma
- Mode of action: It detects proteins to better target tumor cells and activate the immune cells
- Off the shelf, ready to be used
- Repeated infusions until progression or toxicity
- Ramp-up infusions during 3 weeks
- Side effects: neurotoxicity and cytokine release syndrome

BiTE: Results in R/R DLBCL

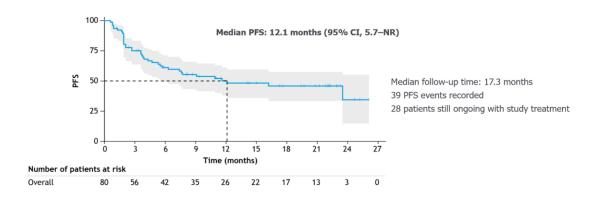


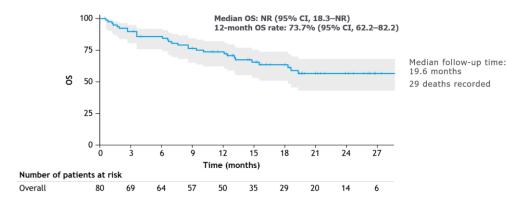
target	Drug	Study	Study phase	No*	Efficacy	References
CD20/CD3	Blinatumomab	NCT01741792	2	25	ORR 43% CR 19%	Viardot et al. Blood 2016
CD20/CD3	RG6026	NCT03075696	1b	28	ORR 48% CR 43%	Morschhauser F ASH2019 # 1584
CD20/CD3	Mosunetuzumab	NCT02500407	1/1b	55	ORR 33% CR 21%	Buddle LI ASH 2018 #399
CD20/CD3	REGN1979 odronextamab	NCT02290951	1	53	ORR 33% CR 18%	Bannerji R ASH 2019 #762
CD20/CD3	REGN1979 odronextamab	NCT02290951	expansion	136	ORR no prior CART 55% CR 55% ORR prior CART 33% CR 21%	Bannerji R ASH 2020
CD19/CD3	Epcoritamab subcutaneous	NCT03625037	1/2	45	ORR 66.7% CR 13%	Hutchings M ASH 2020
CD20/CD3	Glofitamab (RG6026) D-7obinutuzumab	NCT03075696	Expansion	12	ORR 61% in all aNHL CR 54% in all aNHL	Hutchings M ASH 2020

^{*} DLBCL only



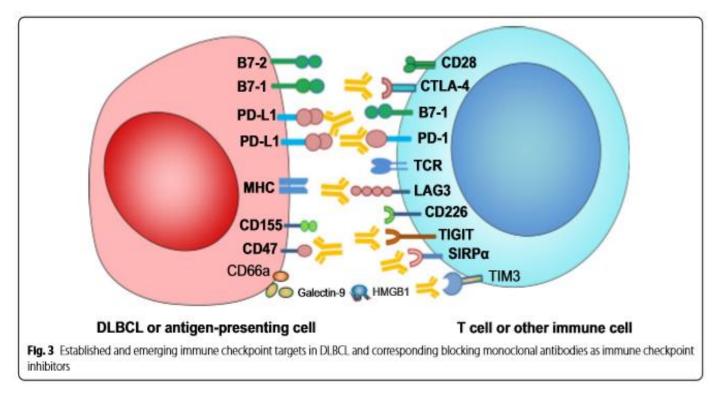
Monoclonal antibodies


L-MIND Tafasitamab (CD19 mAb) combined with Lenalidomine


Phase 2, single-arm, open-label, multicenter study (NCT02399085)

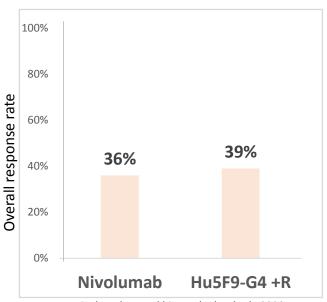
- ORR, 60.0% (95% CI, 48.4–70.8)
- CR rate, 42.5%
 - 82% of CRs PET-confirmed
 - 18% of CRs based on CT only

Salles G et al. Lancet Oncol 2020



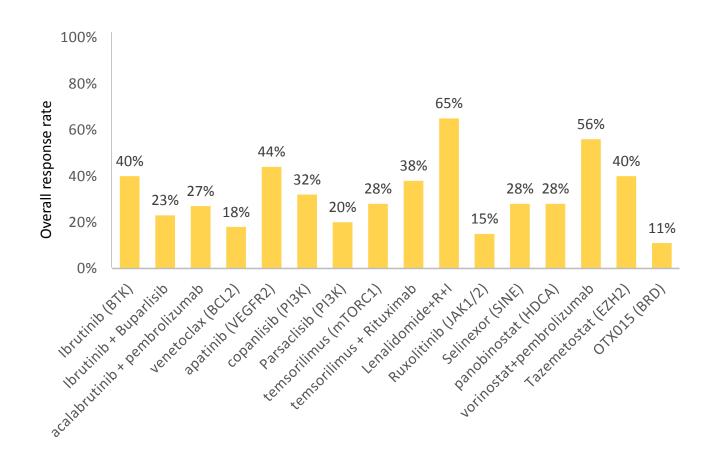
target	Drug	Toxin	Combined agents	Study	Study phase	No*	Efficacy	Reference s
CD19	Loncastruxim ab tesirine	SC3199	-	NCT026690 17	1	63	ORR 55% CR 37%	Kahl et al. CCR 2019
CD79b	Polatuzumab vedotin	MMAE*	Rituximab	NCT016918 98	2	39	ORR 54% CR 21% mDoR13,4	Morschhauser et al . Lancet Haematol 2019
CD30	Brentuximab vedotin	MMAE*	-	NCT014216 67	2	49	ORR 44% CR 17% mPFS : 4m	Jacobsen et al. Blood 2015
CD22	Inotuzumab ozogamicin	Calichea micin	Rituximab	NCT002994 94	1/2	42	ORR 74% 2-y PFS 42%	Fayad L et al J Clin Oncol 2013

^{*}MMAE : monomethyl auristatin E


Immune checkpoints inhibitors (ICIs)

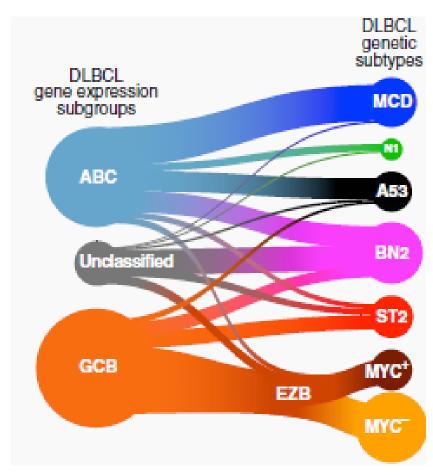
From Wang et al. J Hematol Oncol(2020) 13:175

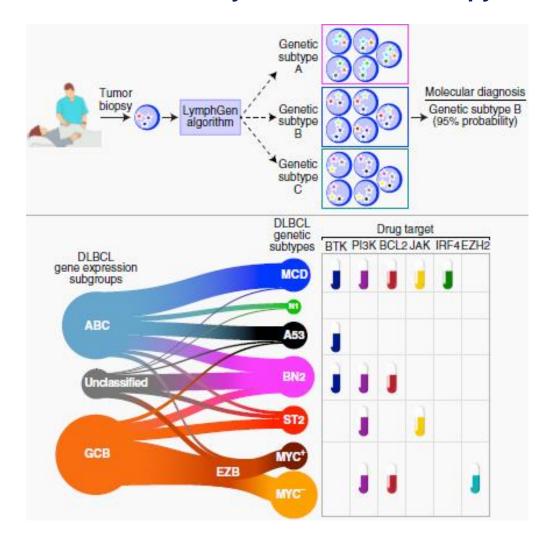
Target	Drug
PD1	Pembrolizumab
	Nivolumab
PDL1	durvalumab
	avelumab
	atezolizumab
CD47	Hu5F9-G4 +R


Nivolumab : Lesokhin et al. Blood Adv 2020 Hu5F9-G4 +R: Advani et al. Hematol Oncol 2019

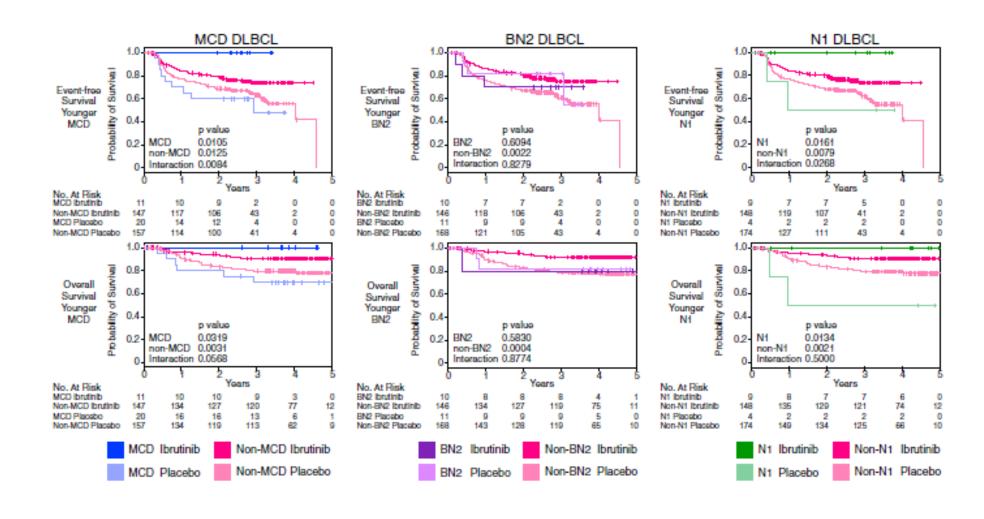
Molecular pathway inhibitors

- BCR signaling pathway inhibition
- BCL-2 inhibition
- VEGFR inhibition
- PI3K/Akt/mTOR inhibition
- NF-kB pathway inhibition
- JAK/STAT3 inhibition
- Selective inhibitors of nuclear export
- Epigenetic-modifying drugs
- Histone deacetylase inhibitors
- EZH2 inhibition
- Bromodomain inhibitors

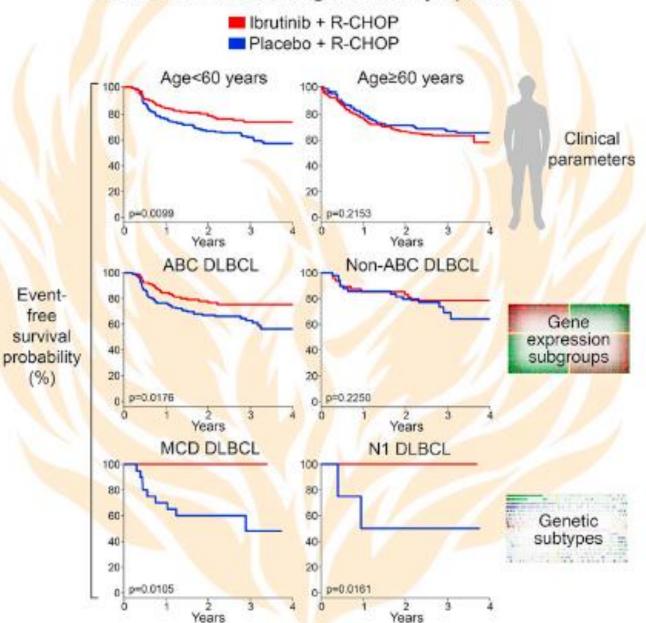

- Single agents : ORR between 10% and 40%
- Combination : increased efficacy



Tailored therapies


Better genetic subtyping in DLBCL compared to ABC/GCB may lead to better therapy

iBTK in DLBCL



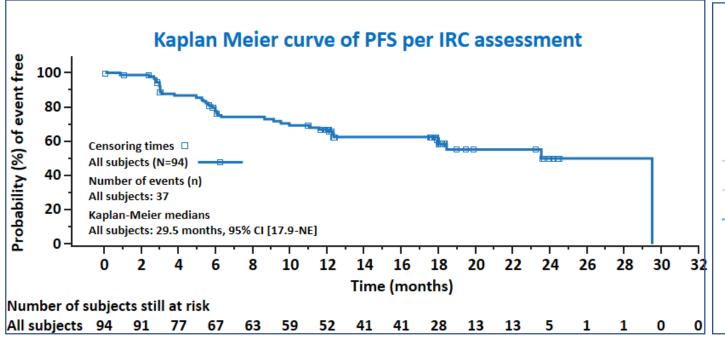
iBTK in DLBCL

- BTK inhibitor ibrutinib plus R-CHOP is effective in younger patients with ABC DLBCL
- Genetic subtypes of DLBCL differ in genotype, phenotype, and oncogenic mechanisms
- MCD and N1 subtypes acquire mutations that promote chronic active BCR signaling
- Patients with the MCD and N1 subtypes have 100% survival with ibrutinib plus R-CHOP

Phoenix Phase III Clinical Trial in Previously Untreated Non-GCB Diffuse Large B Cell Lymphoma

Other B-cell lymphomas

	Axi-cel	Tisa-cel	Liso-cel (FDA)
Agressive B-cell lymphomas	Adult patients with R/R LBCL ≥ 2 Lines • DLBCL NOS • PMBL • HGBCL • Tr FL HIV infected pts ZUMA 1	Adult patients with R/R LBCL ≥ 2 Lines • DLBCL NOS • PMBL • HGBCL	Adult patients with R/R LBCL ≥ 2 Lines • DLBCL NOS • HGBCL • PMBL • Transformed / indolent L. • FL grade 3B TRANSCEND
MCL	 adult patients with MCL ≥ 2 Lines, including one with BTK inihbitor ZUMA 2 		
FL	 adult patients with R/R FL > 2 Lines ZUMA 5 (+MZL) 	adult patients with R/R FL> 2 LinesELARA	



Median follow-up: 21 mo

median PFS: 29.5 months

(95% CI: 17.9, NE)

- CRS grade 3-4 = 0 %
- ICANS grade 3-4 = 3%

	Descriptive analysis		
Disease Characteristic	High-Risk 12-month PFS (%)	Low-Risk 12-month PFS (%)	
POD24	60.8	77.9	
TMTVa	54.5	68.5	

Perspectives - 1: Combination strategies

Trial and NCT #	Phase	CAR-T cell therapy	Molecule	Target
NCT03630159 (PORTIA)	IB	Tisagenlecleucel	Pembrolizumab	Anti-PD1
NCT03310619 (PLATFORM)	II	Lisocabtagene maraleucel/ JCAR017	Durvalumab	Anti-PD L1
NCT03310619 (PLATFORM)	II	Lisocabtagene maraleucel/ JCAR017	CC-122-Avadomide	IMIDs
NCT03876028	1	Tisagenlecleucel	Ibrutinib	Anti-BTK
ZUMA-11 NCT03704298	II	Axicabtagene ciloleucel	Utomilumab	agonistic mAb costimulatory molecule 4-1BB/CD137

1rst line

High IPI

2nd line

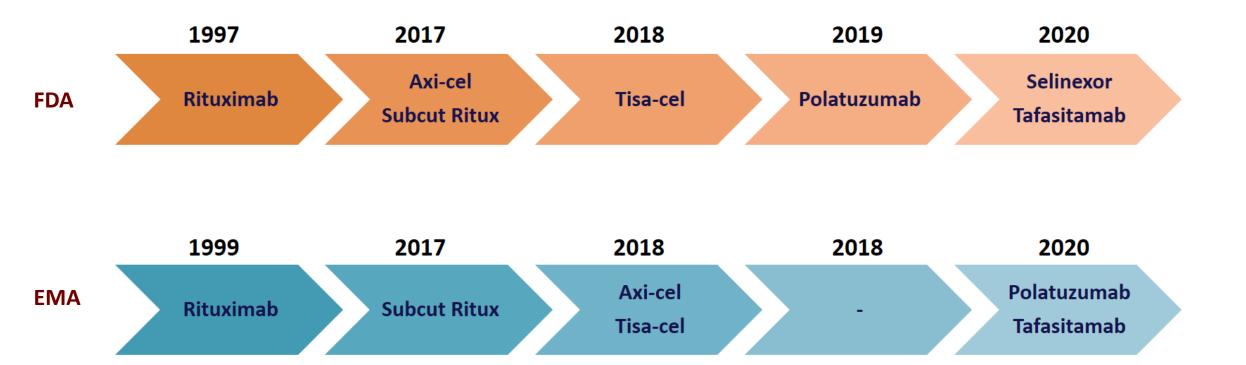
Eligible for transplant 3rd line and more

1rst line

• High IPI — Ph II

2nd line

• CART vs ASCT


3rd line and more

ZUMA 12

- ZUMA 7 (phase III)
- BELINDA (phase III)
- TRANSFORM (phase III)

Agents approved by the FDA and by the EMA in R/R DLBCL

CONCLUSION

- Therapeutic innovations are multiple
- Cell therapy exhibits promising results with potential cure in 30-40% of the refractory aggressive B-cell lymphomas, probably more in indolent lymphomas
- Challenges are multiple
 - To offer personalized medecine based on pretreatment characteristics based on biology and functional imaging
 - To sequence the various therapies as best as possible
 - To predict outcome
 - To overcome toxicities
 - To keep a good quality of life